Software Engineering
Syllabus

UNIT1

Introduction to software Engineering:
Sum definitions - Some size of factors - Quality and Productivity Factors -
Managerial Issues
Planning a Software Project: Defining the
Problem - Developing a Solution Strategy — Planning the Development Process -
Planning an Organizational Structure - Other Planning Activities

UNIT 2

Software Cost Estimation:
Software Cost Factors - Software Cost Estimation Techniques - Staffing Level
Estimation - Estimating Software Maintenance Costs

UNIT 3

Software Requirements Definition: The Software
Requirements Specification - Formal Specification Techniques - Languages and
Processors for Requirements Specification

UNIT 4

Software Design: Fundamental Design Concepts - Modules and
Modularization Criteria — Design Notations - Design Techniques - Detailed
Design Considerations - Real Time and Distributed System Design TestPlan,
Milestones, walkthroughs, And Inspections - Design Guidelines

UNIT 5

Verification and Validation Techniques: Quality Assurance -
Static Analysis - Symbolic Execution - Unit Testing and Debugging - System
Testing - Formal verification

Software Maintenance: Enhancing Maintainability during
Development - Managerial Aspects of Software Maintenance - Configuration
Management - Source Code Metrics - Other Maintenance Tool and Techniques.

TEXT BOOK

SOFTWARE ENGINEERING CONCEPTS

-Richard Fairley
TATA McGRAW-HILL EDITION

UNIIT -

INTRODUCTION:

Software product has multiple users, multiple depets and maintainers.
To Develop a software product

1.user needs and constraints misixplicitly stated.

2.Source code must be implemeatetitested.

3.Supporting documents must lepared.(Principles of operation,users
manual,installation instruction,training aids,mamnce documents)

Software maintenance task
1.Analysis of change request.
2.Redesign
3.Modification of the source code.
4.Thorough testing of the modifzle.
5.updating documents and docuntiemnta
6.Distribution of the modified vkoto the user.

Software Engineering is based on the foundation of
1.Computer Science
2.Management Science
3.Economics
4.Communication Skill
5.Engineering approach to probletaiag

Software Engineerig requires

= Technical skill
» Managerial control
* Management science provides foundation for softywaogact management.
» Computing System should be developed and maintaindoe and within cost
estimate.
» Economics provides resource estimation and costaon
» High Degree o fcommunication is required amongausts,managers,hardware
» Engineers,software Engineers and other technologist
» Engineerig problem solving techniques providessfmsi

1.Project planning

2.Project management
3.Systamatic Analysis

4.Design

5.Extensive Validation
6.0ngoing maintenance actisitie

Fundamental Priniciple of Software Emgnng is to design software products
that minimize the intellectual distance betweengtablem and the solution.

Modules in Software Engineering

Units of decomposition

Software modules have both control interface aatd dhterface.
Relationship among modules is called control itest
Parameters passed between the modules is calledhtiface.

Advances in Software Engineering :

1.Analysis technique-Determ@the software requirements.
2.Metodological approaches-t8afe Designing.
3.Implementation techniques+8eLcode.

4.Software validation technigtexamine and Quality assurance
5.Formal techniques-Verify

Some Definition:
» Software Engineering differs from Computer progranmgn
» In Software Engineer Engineering like techniquesieed to
specify,
= Design,implement,validate,maintain software prodguwathin the
time and budget.
= On small project(1 or 2 programmers,duration i 2 months)
primarily technical.
» On projects involving more programmers and longerations,
magament control is required to coordinate the texdini
activities.
Terms:
Programmer:
Denote an individual who is concerned with detaflsmplementing,
packaging and modifying algorithms,data structue#stning programming languages.

Software Engineers:
Concern with the issues of
1. Analysis
2. Design

3. Verification &Testing
4. Documentations
5. Software maintenance
6. Project Mangement
Computer Software:
It includes the Source code dhtha associated documents and
documentation that constitute the software product.

Components of Software products

Requirements Documents
Design specification
Source code

Test Plans

Principles of Operation
Quality assurance procedure
Software problem reports
maintenance procedures

. Users manual

10. Installation Instruction
11.Training Aids.

CoNoOGOA~WDNE

Documentation:
» Explains the characteristic of the documents.
= Internal Documentation of source code - it désmgithe
characteristics of the code.
= External Documentation --- it explains the chagastic of the
documentation associated with code.
Developer:
Developer or Software Engineer are used intercledrige
Customer:
An individual or organization.

Software Reliability:

The ability of a program to perform a required fume and their stated
conditions for a stated period of time.

Some Size Factors:

Total effort devoted to software:

Hiw SIW cost Ratio

150

100 A

50 A

% of cost

year

In 1960 the ratio was approximately 80% Hardwais end 20%
Software cost.In 1980 the ratio was reversed. §0r%oftware cost and 20% for
Hardware cost.

The reason is the transistors,Intetpreter cisdugive resulted in
dramatic decreases in Hardware cost.
Distribution of Effort:

Life cycle of Software
Analyze & Design
Implement
Test
Adapt
Enhance
. Fix
The life span of software products is one te&8rg for development 5
to 15 years for maintenance.
Software maintenance involves 3 activities.
1.Enhancing the capability of the product.
2.Adapting the products to new processing emirents
3.Correcting bugs.
Distribution of Maintenance:

ourwNE

1.Enhancement—60%
2.Adaptation—20%
3.Correction ---20%
Distribution of effort folevelopment phase
1.Analysis & Design—40%
2.Implementation,Debugging,unit testin@%2
3.Integration & Acceptance testing—40%

From observations,
Software maintenance activities consumed meseurces than
software development activities.
A large percentage of total effort is devotedsaftware enhancement.
Testing requires half the effort during softwdevelopment .
Activities of system testing,enhancement, adaptatbnsumed % th of
total life cycle effort

PROJECT SIZE CATEGORIES:
Project size is a major factor that determinedekiel of management
control and the types of tools and techniques requwn a software project.

Trivial Project:
No.of programmers :1

Duration :for a few days, few week
Product Size :500 source line
Packaged in :10 to @brsutines

These Programs are often personal software

Developed exclusively for the use of the pangmer

Small amount of formal analysis,elaborategtedocumentation, extensive test
planning or supporting documents are needed.

Small Project:

No.of programmers : 1

Duration : 1 to 6 months

Product Size : 1000 6®@ source lines

Packaged in 25 to 50 subroutines

Small Programs usually have no axtgons with other programs.

Example, Scientific applications tten by engineers to solve numerical
problems.

Students Projects written in compded Operating System.

Small Project requires little intetians between programmers and customers.

Standardized techniques and notstistandardized documents and systematic
project reviews should be used in small projects.

Medium Size Projects:

No.of Programmers : 2 to 5

Duration :1to 2 years

Product Size : 10,000 to 15,000 source lines
Packaged in 250 to 1000 routines.

Examples

Medium size projects includes assesmblers,Clenspbmall

management information system,inventory systemRandess control applications.

To develop such programs, interaction among rgners and
Customers is required.

A certain degree of formality is required in ptarg, documents and
project reviews.

Most application programs,System programs areldped in 2 years or
less by 5.

Larger Size Projects:

No.of Programmers : 5 to 20

Duration : 2 to 3years

Product Size :50,000 to 1 lakhs source lines.
Packaged in several sub systems.

O O oo

(@)

O O O0OO0oOo

Large programs has significant interactions witheotprograms and sub
systems.

Examples, Compilers,Small time sharing systemsbdete
packages,graphic packages and real time contrtdrags
Communication among programmers,managers,cust@arereeded.
The larger projects requires more than 1 progrargr@am.

Example, three teams of 5 persons each.

It involves more than 1 level of management.

Systamatic process standardized documents and Ifoemews are
essential.

Very Large Projects:

O O O0OO0OOo

(@)

No.of Programmers : 100 to 1000

Duration -4 t0 5 years

Product Size : 1 million source lines

It consists of several major subsystem each of lwfdons a large system.
The subsystem have complex,interactions with o¢han and with other
separate we developed system.

Tele communication and multi tasking.

It includes large OS, large database system antargicommandor and
control system.

Extremely large Projects:

O OO0 O0OOo

(@)

No.of Programmers : 2000 to 5000

Duration : 510 10 years

Product Size : 1 million to 10 million wsoe lines

It consist of several very large subsystem.

It involves real time processing,tele communicagiomulti tasking and
distributed processing.

Example,Air traffic control,military commandor coolk system.

Quality and Productivity Factors:

Development and maintenance of software product@mgplex task.
There is a fundamental difference between writisgnall programs for
PC and developing or modifying a software product.

Software Quality and programmer productivity carirbproved by
improving the process used to develop and maisi@litware products.

Individual Ability:

» Production and maintenance of software productsabi@ir intensive
activities.

« Productivity and Quality are direct functions oflimdual ability and
effort.

* There are two aspects of ability

» General competition of the individual
» Familiarity of the individual with the particulapplication area.

» Lack of familiarity with the application area cagsearch in low
productivity and poor quality.

= On very large and extremely large projects no ojprmmers so
large.

» The individual differences in programmer produdiwill tend to
average out.

» Modules developed by weaker programmers may shaw po
quality and may lag in delivery time.

= Small and medium size projects (5-fewer progransjaee
extremely sensitive to the ability of the individpaogrammer.

» Individual ability is a primary factor in qualitynd productivity.

Team communication:

* Programming has regarded as an individual andgriactivity.

* Programmers are rarely preced as public docunagewtshey rarely
discuss the exact details of the work in a systemaanner.

» So as a result ,the programmers may mis under#tanale of their
modules in an evolving system.

* This mades mistake that may not be detected wortiesime later. Many
of the recent innovations in software Engineeringhsas design,reviews and code
reading exercise have the goals of making softwaree visible and improving
communications among programmers.

* Increasing product size results in decreasing pragrer productivity due
to the increased complexity of interactions amorggmam components.

 Due to this increased communication is requiredragno
programmers,managers and customers.

From Brooks observation:

No of communication path among programmers = I)(8-
Where,n=no of programmers.

Increasing the number of team members from 3tt3lincreases the no of
communication path from 3 to 6 to 10.

Brooks law:
“Adding more programmers to a late project may enakater”

Product complexity:

There are 3 levels of product comipyex
1. Application Progra
2. Utility Programs.
3.System level Programs.
Application Program

It includes scientific and data processing routiwesten in a high level
language such as COBOL,FORTRAN,C,C++.

Utility Program

It includes compilers,Assemblers,linkage Editord laders.
They may be written in high level language or Assgntanguage.

System Level Programs:

It includes data communication packages real timegss control system,
OS routines in any kanguages.(i.e)high level oeetdy.

Application programs have the highest productiaityl the system programs the
lowest productivity.

» Utility programs can be produced at a rate of Sih@s of system programs.

» Application programs at a rate of 25-100 timesystam programs.

* A product that is twice as large or twice as comle a known product,by
whatever measure other than effort may requiremd@g or even 100 times the
amount of effort required for the known product.

Appropriate Notations:

* In software engineer the representation schemes faadamental
importance, programming languages provides compaztetions for
the implementation phase of software development.

» But there are no widely accepted notations foirggetunctional
requirements ,design specifications,test plangpar®rmance criteria.

* There are no universely accepted notation in soévzmgineering.

» Appropriate notations provide vehicles of commuticcaamong
project personnel.

* It introduces the possibility of using automatettware tools to
manipulate the notations and verify proper usage.

Systamatic Approaches:

* In every field there are certain accepted proceslane techniques

* A Single approach to software development and reaarice will not
be adequate to cover all situations.

» In the evaluation of software engineering it is deiar which of the
various approaches to software development shaulgsbed in which
situation.

Change Control:

» The flexibility of software is a great strength aaldo a great source
of difficulty in software engineering.

* Requirements can also change due to poor undenstpoiithe
problem are external economic and political factgond the
control of the customers or developers.

* Notations and procedures provide the ability todrand access the
impact of proposed changes are necessary to nisikéethe true
cost of apparently small changes to source code.

» Use of appropriate notations and techniques maketsat change
possible without degrading the quality of work puots.

* Planning for software project must include plansclwange control.

Level of Technology:
It include factors suchpasgramming language.
Machine Environment
The Programming Practices.
Software tools
Modern Programming langusageovide improved facilities for data
definition and data usage.
Improve Constructs for gpgieg control flow,better modularization
facilities, user defined exception Handling andlfies for concurrent programming.
The machine environmegtudes a set of hardware and software
facilities for developing, using and maintainingadtware product.
Modern programming prees include use of systematic Analysis and
design techniques,notations,structure coding,s\aienechniques for designing and
documenting and testing.

Level of Reliability:
Every software product must possess basic levaliatbility.
Extreme reliability is gaohonly with great care in analysis,design,design
implementation,system testing and maintenancefoface product.
Both human and machine weses are required to obtained increased
reliability.

Problem Understanding:
» Failures to understand the true nature of the prolib be solved
is a common and difficult issue.

= Often the customer does not truly understand natiittee
problem.

= Often the software engineering does not underdtamdpplication
area and has trouble communicating with the custémeause of
differences in educational backgrounds view tha@{scand
technology.

= Careful planning customer interviews,task obsémnatand
prototyping, a preliminary version of the user’'smal and precise
product specification can increase both customerdaveloper
understanding of the problem to be solved.

Available Time:

A software project requ@i6 programmer-months of effort can be
completed by 1 programmer in 6 months or by 6 @ogners in 1 month.

Software projects ares#@re not only to total effort but also to ellapse
time and the no.of people involved.

Utilising 6 programmers fomonth will be less effective than using 1
programmer for 6 months.

This is because the lggyrcurve for 6 programmers on an 1 month
schedule will occupy a large percentage of thpsald time and because the effort
required for co-ordination and communication amérggogrammers.

Programmer Productivitgyaiso sensitive to the calendar time available
for project completion.

Determining optimum $taflevels and proper elapsed times for
various activities in software product developmsran important and difficult aspects of
cost and resource estimation.

Required Skill:
o0 Software Engineering requires a vast range ofsskill
Good Communications
Knowledge of application area
Requirement definition and design
Problem solving skills
Implementation of software (i.e)Good programmingwkfedge,no syntax
error
Debugging and test plans
o0 Inter personnel communication skill.

O O0OO0OO0OOo

o

Facilities and Resources:
* Work related factors such as
» Good machine access and quiet place to work are mmgortant.
» Software project managers must be effective inidgatith the
factors that motivate the programmers to maintgh product
quality,high programmer productivity and high jaddisfaction.

Adequacy of Training:

» Express oneself clearly in English
» Develop and Validate software requirements andgdespecifications.
» Work within application area
* Perform software maintenance
» Perform economic analysis.
» Work with project management techniques
* Work in groups
Management Skills:
o Many of the problems in software project manageneatnique.
0 Managers experienced in management of computewhaedorojects find
software project management to be difficult.
o Thisis due to the differences in design methodatioms and
development tools.
o Many Organisations offer project management trginmnsoftware
engineers to prepare them for project managemskut ta

Appropriate Goals:

Primary Goal of software enginegristo development of software products
for their intended use.

Every software product must prevaptimal level of

1. Generality
2.Reliability
3.Efficiency
Raising Expectations:
There are two interrelated aspects of raising espieas
1.How much functiabgteliability and performance can be provided
by a given amount of development effort.
2.Issues of fundanaéhinitations of software technology.

Managerial Issues:

» Success of Software project involves

Technical Activities
Managerial Activities

* Managers Control

1.Resources
2.Environment
* Important managers responsibility
Software product delivered iomet
Software working accordingctestomer’s wish
Software within cost estimates

Other managerial responsibility:
Business Plans
Recruiting customers
Developing Marketing Strategies
Recruiting and training employees

Important Problems:

Planning is poor

Selection for project managers are poor (i.e) Rtos and
Techniques

Description of project is poor

Estimation of resources for software project isrpoo
Success criteria is inappropriate

Decisions rules are poor(for selecting the propganizational
structure,correct management techniques)

Procedures ,methods and techniques are not readiliable.

Methods for solving these peoblems:

Educate and Train
Top management
Project
Software developers
Analyze the data from previous software projedird effective
methods
Define objectives,quality
Establish success priority criteria
Develop accurate cost and schedult that are aatbpgte
management and customer
Selection of project managers
Specific work assignments to software developers

Planning a software product:
» Goals can be formulated using concise statemerstjconts.
» Goal apply to both development process and worlysb
* It can be either qualitative or quantitative.
» Every development process
» Should provide product on time.
* Within cost estimates .
* Opportunities for project personnel to learn né&ill.s

Requirements includes:

» Functional requirements

» Performance
* Requirements for hardware,software and firmware.

Qualified requirements

* Response to external interrupts shall we 25 seomdmum
* 50KB of primary memory.
* Full operation 95% of each 24 hour period.

Quanlitative requirements

* Accuracy
» Efficient use of primary memory.
* 95% relaiable

planning the development process:

software life cycle activities
define

develop

test

deliver

operate

maintain.

Noos~wbE

» lifecycle activities are given above. These atiigiare change

* no single life cycle models is used.

» Different models are used for various software pobd

» Alife cycle model that is understood and accepbgdcall concerned
parties improves project communications and ptojemnageability ,
resource allocations, cost control and productityual

The phased lifecycle model:

» Series of successive activities.

* Requires well defined input, process and resultgah defined output.
» Resources is required to complete each phase.

* Application of explicit methods, tools and techrequ

Analysis consist of two sub phases
* Planning
* Requirements definition.

This phase includes

* Understanding the customer problem.
» Performing a feasibility study.

» Developing solution stragedy

* Acceptance criteria

* Planning the development process.

The products of planning are

» System definitions.
» Project plan.

System definitions:

» Expressed in English or some other language.
» Itincludes charts, figures, graphs, tables, ancegns.

Project plan:

» Contains lifecycle model to be used.
* Organitational structure.

» Basic development schedule, resource estimaténgteequirements, tools and
technigques to be used.

» Time and cost are basically calculated becausenitt possible to estimate
exactly without doing basic design.

Requirements definitions:

» lItincludes basic functions of software componémtisardware, software, and
people subsystem.

The product of requirements definition:
* The product of requirements definition is a speatifion that describes
* The processing environment
* The required software functions.
» Performance constraints on the software.
» Exception handling
» Acceptance criteria.

Design phase:
* In the phased model, software design follows amalys
Design phase identified software components
1. Functions.
2. Data streams
3. Data stores
* It specifies relationship among components.
» It specifies software structures.
* Maintaines a record of design decision.
* Blueprint for the implementation phase.
» Design phase consist of
1. Architectural design
2. Detailed design

Architectural design:
It involves identifying the softwareraponents dividing them into software
modules and conceptual data structures, specifgiergconnection among components.

Detailed design
It is concerned with the details of “how to”
» Package the processing modules.
* Implement the processing, algorithm, data strustared interconnection among
modules.

Implemention phase:
It involves translation of design specificationarsource code and debugging,
documentation and unit testing of source code.

Errors:

Implementation phase may include errors in routif@sctions, logical errors,
and algorithm, errors in data structure layout.

System testing:
It involves 2 kinds of activities
1. Integration testing
2. Acceptance testing

Integration testing:

Developing a stratedy for intergrating the softwa@mnponents into a function
requires careful planning so that modules are abkalfor integration when needed.

Acceptance testing:
* Itinvolves planning an execution of various tygéest that software system
satisfied requirements documents.

» After getting the acceptance from the customemso# system of released for
production work and mainteance phase.

Mainteance Phase:
It Includes
» the enchancement of capabilities.
» Adaptation of software to new processing environimen
» correction of software bugs.

Milestones, documents and reviews:
» Another view of the software lifecycle g softwareinmportance to the
milestones, documents and reviews.
» Ask the software products evolves through the dgraknt phase it is difficult

for themanager and team members to determine ieaxtended to predict
schedule delays extra.

» Establishing milestones, reviews points, documantsmanagement sign offs
can improve project visibility.

* The development process becomes more public acaud tangible.

* This result is improved

* Product quality

* Increased programmer productivity.

» Better moralae among team members.

A system definition and project plan:
Product fesability review(PFR)
* PFRis held to determine the feasibility to projeontinuation.
* The outcome of review may be
» Termination of the project.
* Redirection of the proect.
» Or continuation of the project as planned.

A primilarly version of the user’'s manual is prepaed:
* ltinvolves a vehicle of communication betweentooser and developer.

» ltis prepared using information from the systerfirgigon and result of prototype
studies and mock ups of user displays and reports.

A software requirements specification is prepared:
* It defines each essential requirements for soviFapduct.
» External interface to software ,hardware, firm waeople subsystem.
» Each requirements should be define show that ibeaverified by a methods
such as
* Inspection
» Demonstration
* Analysis or testing

A primilarly version of the software verification of the plan is prepared
» |t states the methods to be used
* Results to be obtained.

A software requirements reviews(SRR)
Is held to make sure the adequacy of
system definition

project plan

software requirements specification
software verification plan

preliminary user’s manual.

Al S

Software design specification:
The design team creates this specification indtages
1. Architectural design document is created.
2. Following that the preliminary design review isdhéhen the detailed design
specification is generated.

A preliminary design review(PDR)
* Isheld to evaluate of adequacy of the architettesign insatisfying the
SPS(software Product specification)
* Another reviews may be required to resolve problander format sign
offs is required of the project manager.

Critical design review:
Is held
» CDR is used determine the acceptablility of theveaife design specification.
* A format sign offs is required.

During the design phase , the software verificatioplan is expanned to
include method:

To verify that the design is complete and coesistith respect to the
requirements.

To verify that the source code is complete and isterst with respect to the
requirements and design specification.

A software verification review is held to evaluag the adequacy and
completeness of the verification plan:

To review the primilinary acceptance test plan(ATP)

ATP includes

Actual test cases

Expected result.

Capabilities to be demonstrated by each test.

The acceptance plan is initiated during the deplgase and completed during
the implementation.

During the implementation phased:

Source code is written.

Debug.

Unit tested.

Standard parcties in the following area
Logical structure

Coading style

Data layout

Comments

Debugging

Unit testing

Source code reviews are held during implementation:

This is to ensure that all the code has been reddwy atleast one person other
than programmer.

Inspection are conducted during product evaluatorerify the completeness,
consistency and suitability of the work products.

The users manual the installations and trainiagghnd the software
maintenance plans are completed during the impl&tien phase.

A final acceptance review is performed prior todgurct delivery’.

» Software verification summary is prepared.
» It describes the results of all the reviews, avdgpection and test throughout the
development cycle.

A project legancy is written:
» The legancy summarises the project and provides@d of what went well and
what went wrong during the project.

The cost model:
» This model is used specify the cost of performiagous activities in a Software
project.
* The cost of conducting a Software project is tha sfithe cost involved in
conducting each phase of the project.

The cost involved eac phase include:
» The cost of performing the process
* Preparing the products of the phase.
» Plus the cost of verifying the product of the pregghase are complete and
consistent with the previous phase.

» Cost of producing system definition and projechpiperforming planning
functions and preparing documents+ cost of vergtime system definition and
project plan.

» Cost of SRS= Cost of requirements definition ancudeent + Cost of modifying
system definition and project plan + Cost of vanfySRS is complete and
consistence.

» Cost of design= Cost of preparing design speatific and test plan+ Cost of
modifying and correcting the system definition, jpod, SRS(Software
requirement specification)+cost of verifying design

» Cost of product implementation= Cost of implemegiitocumenting, debugging
and unit tesing of source code+ Cost of users maneidfication plan,
maintenance procedure, instalization and tranmsguctions+ Cost of
modifying and correcting system definition, projetan,SRS, design
specification, verification plan+the Cost of veiifg the implementation is
complete and consistent.

» Cost of system test= Cost of planning and condgdtie test+ Cost of modifying
and correcting the source code+ Cost of verifyhggtest.

» Cost of maintenance Software= Cost of performirgglpct enhancement
+making adaptation to new processing requiremerddiging bugs.

The prototype lifecycle model:

Importance to the sources of product request ,aggéndecisions points and the
use of the prototypes.

Prototype is a mock up or model of the Softwaredpoo.

A prototype incorporates components of the actuadeh

There are several reasons for developing a praotyp

Important reason:

It illustrates input data formats, messages, reordsinteractive dialogues for
the customer.

To explore technical problems in the proposed syste

In situations where phased model of analysis, desigplementation is not
appropriate.

Successive version:

Product development by the mothod of successive@oes is an extension of
prototyping.

In which an initial products skeleton is refinedanincreasing the level of
capabilities

It illustrates the analysis phase followed by iat¢ive design, implementation
and assessment of successive version.

The dashed line indicates that the assessmentgibad may indicate the need
for the further analysis before designing versiéh. |

Version | is the prototype version of the softwpreduct.

Versions one through N of the product or designiat po any implementation
activities.

The dashed line indicates that implementation efith version may reveal the
need for further analysis snd design before prdiogevith implementation of
version [+1

Planning an organizational structure:

Contains various task

The task include

Planning

Product development
Services

Publications

Quality assurance
Support and maintenance

ogkwnE

Planning task identifiers:
= External cutomers
* Internal product needes
» Conducts feasibility study.

Development Task Identifiers:

= design
* implements
= debuggs

» testand integrate the product

service task provides:
= automated tools and computer resources for alr s,
» Performs configuration.
» Product distribution

Publication task develops:
» Users manual
» Instalization instruction
» Principles of operation
= Supporting documents

Quality assurance task provides:
* Independent evaluvation of source code.
» Publications prior to releasing them to customer.

Support task:
= Promotes the product.
» Trainers user.
» Installs the product.

Maintenance task provides:
= Error connection
= Enhancement

Methods for organizing these task include:

1. Project format
2. Functional format
3. Matrix format

Project structures
Project format

ouhwnE =

It involes assuming a team of programmers.
Project team members do

Product definition

Design the product

Implement it

Test it

Conducts Project review

Preparing supporting document.

Functional format:

WN e

In this approach a different team of programmer$gom each phase of the
Project

The work products pass from team to team as thelyed

Functional format involves 3 teams

An analysis team.

A design team and implementation team.

test formatting and maintenance team.

Matrix format

* In this format eac of the functions has its own agement team.

» This format involves a group of specialist perséomoacerned only with
that function.

» Each development project has a project manageecoad only with that
Project

* The Project manager generates and reviews documents

» Each functional group participate in each Project

* Ex: software development team members belongstdekielopment
function similarly testing belong the testing fuoat

Programming team structure:

» Every programming team must have an internal strac

» Team structure depends on the nature of the Pr@jedtthe product
* Basic team structure includes

* Demacratic team

» All team members participate in all decisions.

The chief programmer team:
» chief programmer is assited and supported by dé@an members.
» Ex: doctors, surgeon

Hierarchical team:
* In combines the aspects of the democratic teanchied programmer team.
 Each team should be limited to not more tharr 57omembers for effective
coordination and communication.

Democratic team

» this teams was first described as egoless team.

* Group leadership rotates from member to memberdbaisehe task to be
performed and the differing abilities of the tearambers.

* A Democratic team differs from an egoless tearhas bne team members is
designsted as team leader and occupies the pogitiost among equals.

» This is because a team fuctions best when oneithdiliis responsible for
coordinationg team activities and for making fidatision.

Advantages:
» Opptunities for each team members to contributéetision.
* To learn from one another
* Increased job satisfaction
* Non threatening work environment.

Disadvantages:
* Weeknening of individual and authority.

chief programmer teams:
» this teams are highly structured.
» the chief programmer

» design the product.

* Implement critical parts of the product

» Makes all the major technical decision.

» Work is allocated to the individual programmer hg thief programmers.

* A program librarian maintains program listing, id@sdocuments, test plans etc
in a central location.

* The chief programmer is assited by an adminisegdnogram manager.

Advantages:
» Centralized decision making.
* Reduced communication paths.

Hierarchical team structure:
» This structure occupies a middle position betwéenetixtremes of Democratic
teams and chief programmer teams.

* The Project needed assigns, task, attends, redetgsis problem areas, balances
the word load the participate in technical actesti

* This structure limits the number of communicati@ths in the Project

Disadvantages:
* The most technical competetant programmer tene farémoted in to
management positions.
* Promotion of the best programmer have the two thegaffects.
» Losing a good programmer.
» Creating a poor manager.

Other planning activities:
* Planning for configuration management and qual#gurance.

Configuration management:
* Modeof arrangement
» Concerned witj controlling changes in the work proid.
» Accounting for the status of the work products
* Mainteaning the program support library

Quality assurance:
» Develops and monitors the Project standars.
* Performs audits.
» Develop and perfoms acceptance test.

During planning phase:
* The two activities are specified.
* Tools are identified an acquired.

During design phase:
* Regquriments and design specification are performed.
» Adherence to project standard is monitor.

During implementation phase:
* Requirements, design specification and source acelperfomed .

During testing phase:
» Acceptance and preparation of test results arepeed.

Planning for independent verification and validation:

* Anindependent organization may provide verifioatof work products for some
critical software Project

» Veification makes sure that various work produces@mplete and consistence.

* An external organization may verify that the dessgecification are complete
and cosistance.

» Source code is complete.

» Validation involves.

» Planning and execution of text cases.

* Independent verification and validation resultsigh quality software product.

Planning phase-dependent tools and technique:

* Automated tools,specialized notation and modechrtigues are used to develop
software requriments specification, architectural detailed design and the
source code.

* Management tools such as structures, charts, acktadrack and control
progress.

Other planning activities:
* ltincludes:
primilinary cost estimate.
primilinary development schedule
primilinary staffing levels.
primilinary estimates of the computing resources p@rsonnel require to operate
and maintain the system.

PwnhE

UNIT I
SOFTWARE COST ESTIMATION

INTRODUCTION

* most difficult task in software engineering

* (difficult to make estimate during planning phase
* series of cost estimation

e preliminary estimate is prepared during planning

* an improved estimate is presented at the software
requirements review

* final estimate is prepares at the preliminary desig
view

MAJOR FACTORS

* program ability

* Product complexity
* Product size

* Available time

* Required reliability

* Level of technology

PROGRAM ABILITY

The goal was to determine relative influence of bah
and time shared access on programmer’s productivity

Example: 12 experienced programmer’s were each
given two programming problems to solve some use
batch facilities and some using time sharing

Resulting differences in individual performance
among the programmers were much greaterthan
could be atributed to the relatively small effect b
batch or time shared machine access

On very large projects te differences in individual
programmers ability will tend to average out

But on projects involving 5 or fewer programmers,
individual difference in ability can be significant

PRODUCT COMPLEXITY

There are three categories of software products
Application programs-include data processing and
scientific programs

Utility programs-it include compilers,assemblers
System programs-it include operating
system,dbms,real time system

Application programs are defveloped in environment
provided by the language compilers such as
fortran,pascal

Utility programs are written to provide user
procesing environment

System programs interact directly with the hardware
Brook’s states that utility programs are three times as
difficult to write as application programs

System programs are three times as difficult to wte
as utility programs

Product complexity are 1-3-9 for application
,utility,system programs

Boehm uses three levels of product complexity
equations of total programmer month of effort pm is
provided in terms of the number of thousands of
delievered source instruction ,KDSI

programmer cost for the software project=the effort
in programmer mnth*cost per programmer month

in this terminology the three levels of product
complexity are organic ,semidetached,embedded

organic-application,entity-semidetached,embedded-
system

application program:pm=2.4*(KDSI)** 1.05

utility programs:pm=3.2*(KDSI)**1.12

system programs:pm=3.6*(KDSI)**1.20
example:for a development of a60,000 line applicatn
programs,utility programs and system programs the
ratio of pm:1to 1.7 to 2.8

the development time for a program
application program TDEV=2.5*(pm)**0.38
utility programs TDEV=2.5*(pm)**0.35
system programs TDEV=2.5*(pm)**0.32

given the total programmer months for a project and
the development time the average staffing level is
obtained by

application
program:176.6pm/17.85mo=9.9programmers

utility program:294pm/18.3mo=16programmers
system programm:489.6pm/18.1mo=27programmers

failures in estimating the numberof source
instructions in a software product is to under estnate
the amount of house keeping code require

HOUSE KEEPING CODE

PRODUCT SIZE

posuiton of the source code that handles
input,output,interactive user communication,error
checking and error handling

A large software product is more epensive to devgio
than a small one

Boehm equation indicate that the rate of increaseni
required effort grows with number of source
instruction at an exponential

Using exponents of 0.91 and 1.83 results in estineabf
1.88 and 3.5 more effort for a product that is twie as

large ,and factors of 8.1 and 67.6 for products thaare
10 times as large as known product

These estimates differ by factors of 1.86(3.5/1.88)
products that are twice as large and 8.3(76.6/8.19r
products that are 10 times as large

Effort equation Schedule equation Reference
PM=5.2(KDSI)**0.91 TDEV=2.47(MM)**0.35 (WAL77)
PM=4.9(KDSI)**0.98 TDEV=3.04(MM)**0.36 (NEL78)
PM=1.5(KDSI)**1.02 TDEV=4.38(MM)**0.25 (FRE79)
PM=2.4(KDSI)**1.05 TDEV=2.50(MM)**0.38 (BOES1)
PM=3.0(KDSI)**1.12 TDEV=2.50(MM)**0.35 (BOES1)
PM=3.6(KDSI)**1.40 TDEV=2.50(MM)**0.32 (BOES8L1)
PM=1.0(KDSI)**1.50 - (JON77)
PM=0.7(KDSI)**1.50 - (HAL77)

AVAILABLE TIME

Depending on the exponent used we can easily be byf
a factor of 2 in estimating effort for a product twice the
size of a known product and by a factor of 10 for a
product 10 times the size of known product,even &l
other factors tat influence cost remain constant

Total project effort is sensitive to the calanderitne
available for project competitiom

Software projects require more total effort,if
development time is compressed or expanded from the
optional time

According to putnam, project effort is inversely
proportional to the fourth power of the development
time E=k/(TD**4)

This formula predicts zero effort for infinite
development time

Putnam also states that the development schedule
cannot be compressed below about 86%o0f the nominal
schedule regardless of the number of people or
resources utilized

Boehm states that “there is a limit beyond which a
software project cannot reduce its schedule by bugg
more personnel and equipment “

REQUIRED LEVEL OF RELIABILITY

The ability of a program to perform a required
function under stated conditions for a stated perid of
time

» Accuracy

» Robustness

» Completeness

» Consistency

* These characteristics can be built in to a software

product

* There is a cost associated with different hases émsure

high reliability

* Product failure may cause slightly inconvieniencea the

user

* While failure of other products may incur high

financial loss or risk to human life

Development effort multiliers for software reliability

Category Effect of failure Effort multiplier
Very low Slight inconvinience 0.75
Low Losses easily recovered 0.88
Nominal Moderately difficult to 1.00
recover loses
High High financial loss 1.15
Very high Resk to human life 1.40

LEVEL OF TECHNOLOGY

In a software development required project is refleted by
1. programming language
2. abstract machine
3. programming practises
4. software tools used
modern programming languages provides additional
features to improve programmer productivity and
software reliability
these features include
1. strong type checking
2. data abstraction
3. separate computation
4. exception handling
productivity will suffer if programmers must learn a new
machine environment as part of the development prass
modern programming practises include the use of
a) systematic analysis and design technique
b) structure designed notations

C) inspection

d) structured coding

e) systematic testing

f) program development library
software tools range from elementary tools such as
assemblers compilers,interactive text editors and BMs

SOFTWARE COST ESTIMATION TECHNIQUES

software cost estimates are based on past perfomanc
cost estimates can be made either (i)top dow{i)bottom
up

Top-down:focus on system level cost such as computer
resources.personnel level required to develop thgsem

Bottom up:the cost to develop each module are subsystem.
Then combined to arrive at an overall estimate

1)EXPERT JUDGEMENT

Most widelly used cost estimation techniques(top am)

Expert judgement relies on the experience backgrouwhand
business sense of one or more key people in an angsation
mode. Eg: an expert might arrive at a cost estimatm a
following manner.
i) To develop a process control system
i) It is similar to one that was developed
last yr in 10 months at a cost of one
million dollar

lii) It was not a respectible profit

IV) The new system has same control
functions as the previous but 25%more
control activities

V) So the time and cost is increased by 25%

Vi) The previous sstem developed was the
same

vil) Same computer and controlling devices
and many of the same people are
available to develop the new sysem
therefore 20% of the estimate is reduced

vii) Resume of the low level code from the
previous reduces the time and cost

estimates by 280

IX) This results in estimation of eight lakhs $

and eight months.

X) Small margin of safety so eight lakhs

50,000% and nine months development
time

Xi) Advantage: experience

2)DELPHI COST TECHNIQUES(ESTIMATION)

* This technique was developed at the rand corporatio
in 1948

* This technique can be adapted to software estimatio
in the following manner

1.

2
3
4.
5
6

A co-ordinator was developed at the rand
corporation in 1948

. estimators study the document and complete

their estimates

. they ask questions to the co-ordinator but they

wont discuss with one another

the co-ordinator prepares and distributes a
summary of the estimators response

. the estimators complete another estimate from

the previous estimator

. the process is iterated for as many as required

product

Input Transform Output

system subsystem subsystem
Read parser Data Results
module validator computer

3)WORK DOWN BREAK STRUCTURE

PROCESS HIERARCHY:

A bottom-up estimation tool

WABS is a hierarchical chart that accounts for the
indiviual parts of the system

WBS chart can indicate either product hierarchy or
process hierarchy

It identifies the product components and indicateshe
manner in which the components are interconnected

It identifies the work activity and relationship among
those activities

Using WBS cost are estimated by assigning cost to
each individual component in the chart and
summing the cost

WBS are the most widely used cost estimation
techniques

4)ALGORITHMIC COST MODEL

Constructive cost model(COCOMO)

Algorithmic cost estimators compute the estimated
cost of software system as the some of the coslué t
module this model is bottom up estimates

The constructive cost model (COCOMO)is an
algorithmic cost model described by boehm

In COCOMO model the equation calculates the
programmmar month and deelopment schedule are
used for the program unit based on the number of
deliver source instruction(DSI)

Effort multipliers are used to adjacent the estimag
for product attribute,computer,customer,and project
attribute

The effort multipliers examines the daa from 63
project and by using delphi technic

The COCOMO equation incorporates a number
assumption .for eg. The organic mode application
program equation applied in the following type of
situation

(i) small to medium size project

(iyfamiliar application area

(ii)stable

(iv)in house development effort

(v)effort multipliers are used to modify these
assumption

» Itincludes cost of dovumentation and reviews

* Itincludes cost of program managers and program
librarian

» Software project estimated by COCOMO model include
the following:

(1) careful definition and validation
and requirements is performend
by a small number of people

(i) the requirements remains the
same throughput the project

(i) definition and validation
techniques of n architecture

design is performed by a small
number of capable people

(iv) detailed design, coding and unit
testing are performed in similar
by a group of programmers
working ion a teams

(v) interface errors are mostly found
by unit testing and by inspection

(vi) documentation is performed as a
path of development process

Multiplier Range of values
Product attributes:
Required reliability 0.75t01.40
Database size 0.94t01.16
Product complexity 0.70to1.65
Computer attributes:
Execution time constraint 1.00t01.66
Main storage constraint 1.00t01.56
Virtual machine volatility 0.87t01.30
Computer turnaround time 0.87t01.15
Personnel attributes:
Analyst capability 1.46t00.71
Programmer capability 1.42t00.70
Applications experience 1.29t00.82
Virtual machine experience 1.21t00.90
Programming language experience 1.14t00.95
Project attributes
Use of modern programming practises| 1.24t00.82
Use of software tools 1.24t00.83
Required development schedule 1.23t01.10

STAFFING LEVEL ESTIMATION

* the number of personel required throughput a softwee
development project is not constant

¢ planning an analysis are performed by a small groupf people

e architectural design by a larger or smaller group

* detailed design by a larger number of people

¢ implementation and system testing requires the lagst number of
people

* in 1958 norden observed that research and developmigproject

follows a cycle of planning,design,prototype devetment and use
wqit corresponding personnel utilization

RAYLEIGH EQUATION:

* Any particular point on the rayleigh curve represerts the
number of fulltime equivalent personnel required atthe instant
in time

* Rayleigh curve is specified by two parameters
(htd-the time at which the curve reaches its maximjm value
(ik-the toal area under the curve(ie) the totakffort required
for the project

* In 1976 putnam studied 50 army software life cyclesing
rayleign curve

* From his observation ,rayleigh curve reaches its mamum
value td,during system testing and product releas®r many
software products

* From Boehm observation:Rayleigh curve is an accurat
estimator of personal requirements for the developmnt cycle
from architectural design through implementation ard system
testing

e FSP=PM(0.15TDEV+0.7t) -(0.15TDEV+0.7t)"2

(0.25(TDEV)"2 0.15(Y)"2

ESTIMATING SOFTWARE MAINTENANCE COST

¢ Software maintenance cost requires 40 to 60%of thetal life
cycle devoted to software product
* In some cases it may be 90%
* Maintenance activities include
enhancement to the product
adapting the product to new processing enviroinment
correcting problems
distribution and maintenance activities includes
enhancement-60%, adaptation-20%,error correction-
20%
* during planning phase of the software project the rajor
concened about the maintenance are
0] estimating the number of maintenance
programmmers that will be needed
(i) specifying the facilities required for
maintenance
* A widely used estimators of maintenance personned the
number of source lines that can be maintained by amdividual
programmers

PN E

LIENTZ AND SWANION OBSERVATION

* Maintenance programmers in a business data procesg
installatons maintains 32K

* Full itme software personnel needed for software matenance
can be determined by dividing the estimated numbeof source
instructions to be maintained by the estimated numér of
instruction that can be maintained by a maintenance

programmer

* For example if a maintenance programmer can maintai
32KDSI 2 maintenance programmer are required to maitain
64KDSI ,FSPM=(64KDSI)/(32KDSI/FSP)=2FSPM

» Boehm suggest that maintainence effort can be estated by
use of an acivity ratio,which is the number of sowe
instructions to be added and modified in any givetime period
divided by the total number of instructions

» Step:1 ACT=(DSI added+DSI modified)/DSI total)

* The activity ratio is then multiplied by the number of
programmer months required for development in a gien time
period to determine the number of programmer months
required for maintenance in the corresponding timeperiod

+ Step :2PM=ACT*MMdev

* The enhancement is provided by an effort sdjustmerfactor to
differentiate effort multipliers for maintenance

» ltis different from the effort multipliers used for ,multipliers

+ Step:3PMmM=ACT*EAF*Mmdev

* Heavy importance on reliability and the use of mode
programming practises during development may reducé¢he
amount of effort required for maintenance

» If less importance on reliability and programming practises
during development will increase the difficulty ofmaintenance

Maintenance effort distribution (from LIE8O)

Activity Y%effort
Enhancement 51.3
Improved efficiency 4.0
Improved docmentation 5.5

User enhancement 41.8
Adaptation 23.6
Input data,files 17.4
Hardware,opeating system 6.2
Correctin 21.7
Emergency fixes 12.4
Scheduled fixes 9.3
other 3.4

UNIT [
UNIT-3

SOFTWARE REQUIREMENTS DEFINITION

Introduction

The analysis phase of s/w development involves peajt planning and s/w
requirement definitions.

The s/w requirement specification records the outaoe of the s/w requirements
definition activity.

SRS is a technical specification of requirements fdhe s/w products.
The SRS is based on the system definition.

The requirements specification will state that whaof the s/w product without
implying how.

4.1The S/W REQUIREMENTS SPECIFICATION

Format of an s/w requirements specification

Sectionl: Product overview and summary

Section2: Development, operating, and maintenancig@ments
Section3: External interfaces and data flow

Section4: Functional requirements

Section5: Performance requirements

Section6: Exception handling

Section7: Early subsets and implementation presiti
Section8: Foreseeable modifications and enhancement
Section9: Acceptance criteria

Sectionl10: design Hints and Guidelines
Sectionl1:cross-reference index

Section12: Glossary of terms

Section 1 and 2 present an overview of product feates and the processing
environments.

Section 3 includes

1. User displays

2. Report formats

3. Dataflow diagrams

4. Data dictionary
Dataflow diagram specify
1. Data sources

2. Data stores

3. Transformations to be performed on the data.
4. Flow of data

5. Data stores

Data store is a conceptual data structure that isolgical characteristics of data or
given importance on a dataflow diagrams.

Data stores and data sinks are depicted by shadedatangles.
Transformations by ordinary rectangles.

Data stores by open ended rectangles
The arcs specify the dataflow.

Dataflow diagrams are not concerned with decisiontsicture or algorithmic
details like flowchart.

A data dictionary

Entries include the name of the data item and itstiibutes.

Section 4 of a SRS specifies the functional requimeents for an s/w product.
It specifies the relationship among inputs, actionand outputs.

Section 5 specifies the performance requirements clu as

1. Response time for various activities.

2. Processing time for various processes.
3. Memory constraints.

Section 6 specifies the exception handling.

It includes actions to be taken and the messageshie display in response to
undesired situations or events.

Possible exceptions include

1. Temporary resource failure.

2. Permanent resource failure

3. Incorrect

4. Inconsistent

5. out of range input data and parameters.

Section 7 specifies early subset an implementatigmiorities for the system
under development.

Section 8 specifies the modification and enhancenten
Section 9 specifies the acceptance criteria (varisuest).
Section 10 contains design hints and guide lines.
Section 11 specifies cross reference index.

A cross reference directory should be provided tandex to find the specific
paragraph numbers in SRS.

Section 12 provides definition of terms that are ufamiliar to the customers and
the product developers.

Desirable properties

A requirement document should be

1. Correct

2. Complete

3. Consistent

4. Unambiguous

5. Functional
6. Verifiable
7. Easily changed.

An incorrect, an incomplete set of requirements canesult in an s/w product that
satisfies its requirements but doesn’t satisfy custmer needs.

S/w requirements should be functional in nature thais they should describe
what is required without implying how the system wil meet its requirements.

Changes will occur and project success often dependn the ability to
incorporate change without starting over.

4.2 FORMAL SPECIFICATION TECNIQUQES

Functional characteristics of an s/w product are oa of the most important activities
to be then during the requirement analysis.

The advantage of formal notation is concise and anmpuous.
They provide the basis for verification of the resliing s/w product.
Two nations are used to specify the functional chacteristics.

1. Relational
2. State oriented

Relational notations

It is based on the concept of entities and attribws.
Entities are named elements in a system.

The names are chosen to denote the nature of theerlents.
Eg: stack, queue

Attributes are specified by applying functions andrelations to the named entities.

Attributes specify permitted operations on entities relationships among entities and
data flow between entities.

Relational notations include,

1. Implicit equations

2. Recurence relations

3. Algebric axioms

4. Regular expressions

State oriented notations include
1. Decision tables.

2. Even tables.

3. Transition tables.

4. Finite state mechanism.-
5. Petrinets.

4.2.1 RELATIONAL NOTATIONS
Implicit equations

It states the properties of a solution without stahg a solution method.
E.g. Matrix inversion M*M~A1=I+-E

Matrix inversion is specified such that matrix product of the original matrix M and
the inverse of M, M yields the identity matrix I+_the error matrix e (computation
error).

Complete specification of matrix inversion must intude items such as matrix size,
type of data elements etc....

Given a complete functional specification for matrk inversion, design involves
specifying a data structure, an algorithm for compting the inverse.

Recurrence relations

It consists of on initial part called the basis andbne or more recursive parts.

The recursive part describe the decide value of aihction in terms of other value of
the function

Eg.fibonaccies number,F1(0)=0,F1(1)=1,F1(n)=F1(N-belongs to F1(N*2) for all
n>1.

Recurrence relation is easily transformed into rectsive programs.

4.2.2 STATE ORIENTED NOTATIONS

Decision tables

It provides a mechanism for recording complex decien logic.

DECISION RULES

mule 1

1ule 2

rale 3 rule 4

condition stab

(condition entries)

action stub

(action entries)

Decision table is segmented into four quadrants

1. Condition stub

It contains all of the conditions being examined.

2. Condition entry

It is used to combine conditions into decision ruke

3. Action stub
It describes the actions to be taken in response &decision rules.

4. Action entry
It relates decision rules to actions.

1 2 B
cridat linoat 1s safisiactory y N N
pay experience is favorable | = Y N
special clearance is obtained | o — Y
perform approve order e X ¥
go to reject order

Orders are approved if the credit limit is not exceded or if the credit limit is
exceeded but past experience is good or if a spd@awangement has made
otherwise the order is rejected.

The(y, n,-) entries in each column of the conditioentry quadrant form a
decision rule.

Ambiguous pairs of decision rules that specify idgical actions are said to be
redundant.

Those specifying different actions are contradictoy.

Table 4.5

decision rule

rulel rule2 rule3 rule 4
cl ¥ B] ¥]
c2 Y N e N
c3 N "y N N
Al X
A2 X
Az X X

R3 and R4 are redundant rules.
R2 and R3, R2 and R4 are contradictory.

A decision table is complete if every possible set conditions has a
corresponding actions prescribed.

Table 4.6
1 q I N
2 Pv N
3 9P
Al X
A2 X
A3 X

EVENT TABLES

Its specify actions to be taken when event occur der different sets of conditions,
A two dimensional event table relates actions to twvariables.

F (M, E) =A

M denotes the current set of operating conditions.
E is the event.

A is the actions to be taken.

E.g.ifa systemis in startup mode (EU) and eve&13 occur action Al6 is to be
taken f (SU, E13) =A16.

E.g. actions separated by semicolon .e.g. (A14, A3Rdenotes A14 followed
sequentially by A32.

TRANSITION TABLE

It is used to specify changes in the state of astgm.
Given the correct state and the current condition e next state results.

F (si,s))= sk
SK=next state
Cj=current condition

Sj=current state

current :'rrpﬂr
current state a b
30 30 31
11 31 30
next state

Given current state S1 and current input b the systm will go to state SO.
F (S1, b) =SO

In transition diagrams state becomes nodes. In amicted craft.
Transitions are represented as arcs between nodes.

FINITE STATE MECHANISM

Data flow diagrams, regular expressions, transitiortables are combined in finite
state mechanism.

The data flow diagram for a s/w system consistingf@ set of process interconnected
by data streams.

Data streams are specified using regular expressisn

Process can be described using transition table.

Ds DI11° DI12° De

Processes split states in initial state so and wddr input D3.

In state S2 split writes zero or more D12 msgs to/ then on receipt of the end of
data marker De. Closes F7 and returns to state so tvait for next transmit ion.

Limitations

Finite state mechanism is not possible for complesystem. Because it involves large
no of states and many combination of input data.

PETRINETS

Petrinets were invented in the 1960s by Carl Petat the university of Bonn, West
Germany.

They provide a graphical representation technique ad systematic and systematic
methods.

It was invented to overcome the limitations finitestate mechanism.
(e.g.) 1. Concurrent systems are designed to pernsitmultaneous execution of the
siw

Components called task or process on multiple prossors.
Concurrent task must be synchronized to permit commnication among task that
operates at different execution rates, to prevenimultaneous updating of shared

data and to prevent deadlock.

Deadlock occurs when all the task in a system areaiting for data or other
resources that can also waiting on other task.

Fundamental problems of concurrency are synchronizgon, mutual exclusion and
deadlocks.

Ds DI11° DI12° De

A pertinent is represented as a misdirected graph

Two types of nodes are used in a petrinets calledgges and transition.
Places are marked by tokens.

Petrinets are characterized by an initial marking d places and a firing rule.
A firing rule has two aspects.

A transition is enabling if every input place has aleast one token.

':Q!U

i‘ﬂ

aﬁ:ﬂm
Lo 5:3.::1
(0p2 (0 }Pj C pd £1£2,43
co_ sn.rf
(0 35 L0 fﬁ ().;?

|
OF

23

An enable a transition can fire.
When a transition fires each input place of thatrtansition looses one token and
each output place of that transition gains one toke

A marked petrinets is commonly defined as a quadrule -4 values in a system.

Consisting of a set of places as set of transitidna set of arcs a and a marking m
.C=(p, t,a, m).

4.3 LANGUAGES AND PROCESSORS FOR REQUIREMENTS
SPECIFICATION

A no of special purpose language and processor halbeen developed.

It permits concise stmt and automated analysis ofaquirement specification for
s/w.

Some specification languages are graphical in natar

Some are textual imager.

Problem stmt language/problem stmt analyzer (PSL/P&)

It was developed by proff.Daniel Teichrow at the Uiversity of Michigan.
The problem stmt analyzer is the PSL processor.

This model describes a system as a set of objectalaach object have properties
and each property have their own values.

Objects may be interconnected.
These connections are called relationship.
The objective of PSL

Is to permit expression of much of the informations that commonly appears in
SRS.

In PSL system discretions can be divided into 8 maj categories.

1. System input output flow
It deals with the interaction b/w the system and & environment.

2. System structure
It is concerned with the higher achy among objects a system.

3. Data structure

It includes all the relationships that exist amonghe data used.

4. Data derivation

It specifies which data objects are involved in pdicular process in the system.

5. System size and volume
It is concerned with the size of the system and tle factors that influence the
volume of processing required.

6. System dynamics
It presents the manner in which the system behavewertime.

7. System properties
It specifies the properties if the system object.

8. Project management

It specifies the project related information as welas product related
information.

Problem statement analyzer

The problem statement analyzer is an automated anger for processing
requirements stated in PSL.

PSA operates on a database of information collectdcom a PSL description.
PSA system provide reports in four categories
1. Database modification reports.
2. Reference reports.
3. Summary reports.
4. Analysis report.
1. Databasemodification reports

It list changes mode in the last report with warnirg msgs.

These reports provide a record of changes for errocorrection and recovery.
2. Reference reports

It includes name list reports.
It lists all the objects in the database with typeand data lost change.

1. Formatted problem statement reports.
It shows properties and relationships for a particlar object.

2. Dictionary report
It provides a data dictionary.

3. Summary report

It presents information’s collected from several réationships.
1. Database summary report

It provides project management information’s by liging the total no of objects of
various types.

4. Structure report
It shows complete and partial higherarchiy.

1. External picture report
It describes data flow in graphical form.

5. Analysis report

1. Content comparison report
It compares the similarity of input and output.

2. Data processing interaction report
Used to detect gapes in information flow and unusedata objects.

3. Processing chain report
It shows the dynamic behavior of the system.

PSL/PAS is a useful tool for documenting s/w requéments.

It changes the ways in which s/w is developed indtorganization.
Some times the changes may be better and some tinfiesthe worst.
Tools don't solve problems.

Itis used to improve s/w quality and programmer poductivity.

RSL (REQUIREMENT STATEMENT LANGUAGE)

It was developed by the TRW defense and space systegroup.

It is used to permit concise and unambiguous speigétion of requirement for
real time s/w systems.

RSL and REVS are components of s/w requirements emgering methodology.
RSL has for primitive concepts
1. Elements-which name objects.

2. Attributes
It describes the characteristics of elements.

3. Relationships
It describes the relation b/w elements.

4. Structure

Composed of notes and processing steps.

(e.g.) RSL element

‘Data”

“Initial value” is an attribute of the element data.

“Input” specifies the relationship b/w a data itemand a processing step.

Specifying requirements in this approach makes exjlit the sequences of the
processing steps required.

The processing step may be done by several diffetesiw components and an s/w
component may incorporate several processing step.

Follows are specified in the RSL as requirement netork

R-NETS have both graphical and textual representatin.

The requirements engineering validation system opates on RSL stmts.
It consists of three major components

1. A translator for RSL

2. a centralized database, the abstract system semti@ model.

3. A set of automated tools for processing informain in ASSM.

(e.g.)Air defense system.

STRUCTURED ANALYSIS AND DESIGN TECHNIQUES

SADT implements a graphical language. And a set @fethods and management
guidelines for using the language.

The SADT language is called a language of structudeanalysis.
Each diagram is drawn on a single page.

On an actigram the nodes denote activities and thercs specify data flow b/w
activities.

Datagram’s re important for at least two reasons: ¢ indicate all activities
affected by a given data object, and to check thempleteness and consistency of
an SADT model by constructing data diagrams from aet of actigrams.

control date
sourcodate
computed
— SONFCE
inpu t.rfnt_ Activity vuitputdate :;rﬂf rog program gsulis.
infgrprato
procassor interprator

Fig a illustrates the formats of actigrams and datgram nodes. It is
important to note that four distinct types of arcscan be attached to each
node.

Arcs coming into the left side of a node carry inpts and arcs leaving the
right side of a node convey outputs.

Arcs entering the top of a node convey control andrcs entering bottom
specify mechanism the concept of input, output, corol and mechanism
bound the context of each node in an SA diagram.

Outputs provide input and control for other nodes.

In a datagram the input is the activity that creates the data object and the
output is the activity that used the data object.

STRUCTURED SYSTEM ANALYSIS

Two similar several of SSA was described by Gane drSarson and by
Demarco.

SSA is used to traditional data processing environemt.
SSA uses a graphical language to build models ofstgms.
SSA incorporates databases concept.

There are four basic features of SSA

1. Data flow diagrams

2. Data dictionaries

3. Procedure logic representation
4. Data store structuring techniques.

1. Data flow diagrams

Open ended rectangle indicates resources
Labels on the arcs denote data items.

Shaded rectangles depicts source and since for data

Remaining rectangles indicates processing steps.

2. Data dictionary
It is used defined and record data elements

3. Procedure logic representation

Decision tables ad structured English are used tgecify algorithmic
processing details.

Important features of SSA

Relational model is used to specify data flow andada stores.
Relations are composed from the fields of data recds.
These fields are called a domain of the relation.

If the record has n fields then the relation is caéd n tuple.

